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Winding angle variance of Fortuin-Kasteleyn contours
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The variance in the winding number of various random fractal curves, including the self-avoiding walk, the
loop-erased random walk, contours of Fortuin-Kastelyn clusters, and stochastic Loewner evolution, has been
studied by numerous researchers. Usually the focus has been on the winding at the end points. We measure the
variance in winding number at typical points along the curve. More generally, we study the winding at points
where k strands come together, and some adjacent strands may be conditioned not to hit each other. The
measured values are consistent with an interesting conjecture.
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Duplantier and Saleur@1# studied the winding angle be
tween the two endpoints of a finite self-avoiding wa
~SAW! in two dimensions~2D!, and indeed, a broader clas
of curves. Using exact but nonrigorous Coulomb gas me
ods, they found that the distribution of winding angle a
proaches a Gaussian and they explicitly computed the v
ance. When the end points of the walk are distanceL apart,
the winding variance is;(8/g)ln L, where g is a model-
dependent parameter which is 3/2 for SAW. The windi
angle at a single end point~relative to the global averag
direction of the curve—see below for a precise definition! is
a Gaussian with variance (4/g)ln L @1#. We found experimen-
tally that the variance in the winding at typical~random!
points along the curve was only 1/4 as large as the varia
in the winding at the end points. More generally, whenk
strands of the curve come together at a point, the wind
angle variance is 1/k2 as large as at the end points; Eq.~1!
below generalizes this further.

Remark.After our initial experiments we learned that th
4/(gk2)ln L formula is also contained in unpublished notes
Duplantier. However, to our knowledge, the winding at typ
cal points or points wherek strands come together is no
mentioned in the literature, except in the case of loop-era
random walk~LERW!, where we have identified a mino
oversight in the calculations that resulted in incorrect val
being reported. Our experiments can be seen as a te
Duplantier’s Coulomb gas predictions. We also report
other random fractal curves, for which the Coulomb g
methods do not apply.

The main object of our study is the 2D Fortuin-Kastele
~FK! random cluster model@2,3# at criticality, specifical-
ly the contours of the clusters. The FK model is lik
bond percolation with edge probabilityp, but there is
another parameterq, and Pr@configuration#}p#’s bonds

(12p)#’s missing bondsq#’s clusters. For eachq, there is a critical
p above which the system percolates. Whenp5pcritical , the
contours of the clusters form a system of loops called
fully packed loop model@4–6#. See Fig. 1, left panels. A
loop configuration occurs with probability proportional
n#’s loops wheren5Aq @4–6#.

In addition to the perimeter~or ‘‘hull’’ ! of a cluster, the
‘‘external perimeter’’ has also been studied~see Fig. 1, right
panels!. Grossman and Aharony@7# found experimentally
that by closing off narrow passageways on the hull of per
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lation clusters, the fractal dimension drops from 7/4@8# to
4/3, and that furthermore the precise definition of ‘‘narrow
had little or no effect on the fractal dimension 4/3. See R
@9# for an explanation of this phenomenon in terms of pa
crossing exponents. The external perimeter of percola
clusters is believed to be essentially the self-avoiding w
@7,9–11#, and the external perimeters of FK clusters for oth
values of q are also interesting. Therefore, in addition
studying the hulls of the FK clusters, we also studied th
external perimeters by closing off passageways of lat
spacing 1 and looking at the hulls of the resulting cluster

The perimeters and external perimeters of FK clusters

FIG. 1. The contours and external perimeter of critical FK clu
ters. The upper left panel shows a FK random cluster configura
with q53 at criticality. On the upper right panel we closed off th
narrow passageways of this FK configuration by connecting a
cent pairs of vertices that belong to the same connected compo
In the lower panels we show the fully packed loop configuratio
that come from the above bond configurations. The loops on the
traverse the hull or perimeter of the clusters. The loops on the r
traverse the external perimeter of the clusters. The longest perim
loop and longest external perimeter loop are shown in bold.
©2003 The American Physical Society01-1
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TABLE I. Summary ofkk measurements for the perimeter and external perimeter of FK clusters. The table goes up toq54, beyond
which the FK model has a first-order phase transition without large loops@16,17#. The values of the fractal dimensionD f are summarized
from Refs.@7–9,14,18–23#, andk1 comes from Ref.@1#. The values fork2 for the perimeter and external perimeter were measured
described below.k3 for LERW, was measured by looking at the ‘‘triple points’’ of uniformly random spanning trees—points where
strands come together.k4 andk6 for the spanning tree perimeter arek2 andk3 for LERW, respectively. Forq51, k3 is k2 of the external
perimeter@9,24#, and likewisek55k48 ~defined below!. The measurements are consistent with the hypothesis thatkk5k1 /k2, a formula that
also appears in@25#.

Perimeter of FK clusters External perimeter of FK clusters
qa nb gc k1

d k2 k3 k4 k5 k6 D f
e Related model q g k1 k2 k3 D f Related model

0 0 1/2 8 2 1/2 2/9 2 Spanning tree 0 2 2 1/2 2/9 5/4 LERW
dense SAW

1 1 2/3 6 3/2 2/3 6/25 7/4 Polymers atF point 1 3/2 8/3 2/3 4/3 Self-avoiding walk
square ice Brownian frontier

2 A2 3/4 16/3 4/3 5/3 2 4/3 3 3/4 11/8

31A5

2

11A5

2
4/5 5 5/4 13/8

31A5

2
5/4 16/5 7/5

3 A3 5/6 24/5 6/5 8/5 3 6/5 10/3 17/12
4 2 1 4 1 3/2 Two perfect matchings 4 1 4 3/2

aq is the cluster fugacity in FK random cluster model. n25q @4–6# ~perimeter only, not external perimeter!.
bn is the loop fugacity in fully packed loop model. n522 cos(pg) @12,13#.
cg is the coupling constant of the associated Coulomb gas. k5k154/g @1#; gext. perimeter51/gperimeter@14#.
dkk is the winding angle variance whenk curves meet at a point.
eD f is the fractal dimension of curves. D f5111/(2g)511k/8 @12,15#.
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closely related to a variety of models, most notably the s
chastic Loewner evolution~SLE! process introduced by
Schramm@26#. In a discretized version of SLE, a curve in th
plane grows as follows: the portion of the plane not in t
curve is conformally mapped to the half plane, with the tip
the curve mapped to the origin. A small random cut is th
made starting at the origin, where the slope of the cu
controlled by a parameterk. The original curve gets ex
tended by the preimage of this small cut, and the proc
repeats. The variance in the winding angle at the end poin
SLEk is k ln L @26#.

The SLE process describes the limiting behavior of a
riety of statistical mechanical models in 2D. Schram
proved that SLE2 gives the scaling limit of LERW, provided
that LERW has a conformally invariant scaling limit; re
cently Lawler, Schramm, and Werner@27# proved this with-
out assumptions. Smirnov@28# proved that critical site per
colation in the triangular lattice converges to SLE6. Lawler,
Schramm, and Werner@29# proved that the frontier of
Brownian motion~with suitable boundary conditions! con-
verges to SLE8/3. There are good theoretical@30# and experi-
mental@31# reasons to believe that SLE8/3 also describes the
SAW. Calculations by Kenyon and Schramm@32# suggest
that SLE4 describes the loops arising from superimpos
two domino tilings. Rohde and Schramm@15# proved that
the fractal dimensionD f of SLEk is at most 11k/8 when
k<8, and their calculations suggestD f511k/8. See also
Refs. @18,20,33–37# for further results on SLE. Schramm
conjectured that the contours of FK clusters at critica
have the same local properties as SLEk , wherek depends
on q.

We study the perimeter and external perimeter of FK cl
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ters by looking at the winding angle function. Given a loo
or a path in the plane or on a torus, we define the wind
angle functionw(), a function of the edges, as follows. W
pick an arbitrary starting edgee on the loop or path and an

FIG. 2. Winding angle variance for the largest contour whenq
51 as a function of the side lengthL of the box. Error bars on our
estimates of the winding angle variance are shown, but are q
short and appear as points. A curve of the formk2 ln L1a was
least-squares fitted to these data and plotted here. The 95% c
dence intervals (61.96 standard deviations! for the parameters are
k251.500260.0023 anda50.554 9460.013, consistent withk2

53/2. The fit has ax2 statistic of 23.65 with 23 degrees of freedo
for a p value of 0.42, so the fit passes thex2 test. In this case the fit
is good all the way down toLmin532. In some cases the fitted curv
lies outside the 95% confidence interval atLmin , indicating correc-
tions to scaling, and in these cases we increasedLmin . These data
are summarized in the first line of Table II.
1-2
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arbitrary value for the winding functionw(e) at that edge.
The winding at a neighboring edgee8 is defined byw(e8)
5w(e)1 the turning angle frome to e8 measured in radians
This definition applies to paths or noncontractable loops,
loops that wind around the torus. If a loop is contractable
a point, this would yield a multivalued winding function, s
we adjust the definition of w(e8)2w(e) by 2p/
( length of loop) to get a single-valued winding functio
This specifies the winding angle function up to a global a
ditive constant; we choose the value of this global cons
to make the average winding angle of the edges on the
or path 0.

When k strands of the perimeter or external perime
converge on a point, the winding angle variance should s
askklnL. Table I summarizes our measurements ofkk , sug-
gestingkk5k1 /k2 ~see also Refs.@25,38#!.

Remarks on LERW.Our simulation values fork2 andk3
for LERW disagree with the values previously reported
Kenyon@39# by a factor of 4 and 9, respectively. These c
culations used the Temperley@40# correspondence betwee
spanning trees and dimer systems, and Kenyon correctly
rigorously computed the variance in the height function
the associated dimer system when there were 1, 2, or 3 p
approaching a point. The height function of the dimer syst
is related to the winding angle for the paths: when there

TABLE II. Winding angle variance coefficient for the longe
loop (k2), longest loop of the external perimeter (k28), and largest
pinch of the longest loop (k48). When q54, we expect that log
corrections@43,44# affect the measuredk28 andk48 .

q k2

Nearby
rational L ’s

x2 test
p value

1 1.50060.002 3/2 32–2048 0.42
2 1.33360.003 4/3 32–1280 0.77

31A5

2
1.25260.003 5/4 32–896 0.036

3 1.20460.004 6/5 32–896 0.59
4 1.07860.007 1? 32–768 0.72

q k28
Nearby

L ’s
x2 test

rational p value
1 0.66660.002 2/3 80–2048 0.71
2 0.74760.002 3/4 32–1280 0.67

31A5

2
0.77960.003 4/5? 32–896 0.66

3 0.79560.005 ?? 32–896 0.019
4 0.80060.008 ?? 32–768 0.75

q k48
Nearby

L ’s
x2 test

rational p value
1 0.23960.007 6/25 32–2048 0.84
2 0.24760.008 12/49? 32–1280 0.27

31A5

2
0.24360.009 20/81? 32–896 0.31

3 0.24360.009 30/121? 32–896 0.71
4 0.26760.010 1/4?? 32–768 0.86
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k paths, each winding changes the dimer height function
4k. The factor ofk was omitted, leading to the factor ofk2

discrepancy in the winding angle variance.
The longest contour of a FK configuration is likely to h

itself many times~which is why the perimeter and extern
perimeter are different!; the places where the contour hi
itself are called pinch points. For the longest contour,
identified the pinch point giving rise to the longest pinch.
this point there are four strands that travel a distance of
order of the box lengthL, suggesting that the winding angl
variance at this point should grow ask4 ln L. However, as
noted by Schramm@24#, the pinch point with the longes
pinch is an atypical pinch point because there are two a
cent strands conditioned not to hit each other—if they did
each other, then this would create a longer pinch. Thus,
winding angle variance at the longest pinch point is govern
by a different constantk48 , and grows ask48 ln L.

In general, letkk8 be the winding angle variance coeffi
cient when there arek strands meeting at a point and tw
adjacent strands do not hit each other~when k52, the left
side of one strand may hit the right side of the other stra
but not vice versa!. Whenq54, the strands do not hit eac
other anyway@15#, so kk85kk . When q51 and k strands
meet at a point, conditioning two adjacent strands not
touch has the same effect as adding an extra strandkk8
5kk11 @9,24#. For other values ofq it is plausible that re-
quiring two of the strands not to hit each other has the eff
of adding some fractional number of strandsf (q) between
the strands required not to hit each other; similar phenom
have been observed elsewhere. When two strands mee
point that happens to be on the external perimeter, the r
side of one strand does not hit the left side of the ot
strand. Thus,k28 for the perimeter isk2 for the external pe-
rimeter, which ~by k25k1/451/g @1# and gext. perimeter
51/gperimeter@14#! in turn is 1/k2 ~for the perimeter!, giving

TABLE III. Measurements ofk1 , k2 , k3, andD f for the paths
in uniform spanning tree~UST! ~i.e., LERW@45#! and the minimum
spanning tree~MST!. The estimate ofk1 comes fromk2 of the
spanning tree contour. The first estimate ofk3 comes from a triple
point, the second estimate comes from the longest pinch (k48) of the
spanning tree contour.

UST path
~LERW! Parameter

Nearby
rational L ’s

x2 test
p value

k1 2.00060.002 2 32–1792 0.024
k2 0.51060.003 1/2 48–1792 0.60
k3 0.23560.010 2/9 40–1792 0.17
k3 0.22960.008 2/9 32–1792 0.34
D f 1.25260.001 5/4 32–1792 0.83

MST path
k1 1.88660.001 ? 32–4096 0.81
k2 0.43960.002 ? 40–4096 0.0051
k3 0.20060.006 ? 32–4096 0.97
k3 0.20160.006 ? 32–4096 0.53
D f 1.21860.001 ? 32–4096 0.070
1-3
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k1 /~21 f ~q!!254/k1 ,

f ~q!5k1/222,

kk85k1 /~k1k1/222!2.

For example, whenq50 this predictsk4852/9. Indeed, the
largest pinch point for SLE8 corresponds to a triple point o
the spanning tree, for which we already have the value 2
For other values ofq, our measured values ofk48 appear to be
consistent with this formula.

More generally, whenk strands meet at a point, andj
adjacent pairs do not hit each other, we expect the wind
angle variance to grow like

k1

@k1 j max~0,k1/222!#2
ln L. ~1!

To measure thek ’s for a given value ofq, for each of
several system sizes~side lengthL a power of two multiple
of 4, 5, 6, or 7, starting withL54323,5323,6323,7
323,4324, . . . ), wegenerated 10 000 random FK config
rations using the methods described in Refs.@41,42#. In each
one we identified the longest contour~and also the longes
tt.

B

a

.
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outer contour! and computed the winding angle function
defined above. Fork2, the square of the winding at a rando
single edge on the loop is an estimator of the winding an
variance of the loop, but a more efficient estimator is t
average square of the winding angle of edges on the lo
For k48 , we measured the square of the winding at the pin
point of the longest pinch of the longest contour. The data
the longest contour whenq51 ~percolation! are shown in
Fig. 2, whose caption explains how we estimatedk2 , k28 ,
andk48 . Tables II and III summarize our estimates.

We also conducted measurements for the minimum sp
ning tree~MST! with random edge weights. The paths of th
MST are smoother and less windy than those of the UST~see
Table III!. For MST it is unlikely thatD f511k1/8, so the
MST path is not described by SLE.

In conclusion, Eq.~1!, which generalizes Duplantier’s
winding angle formula, is supported by both experiments a
heuristic arguments. It would be interesting to see if Eq.~1!
holds for SLEk .
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