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Winding angle variance of Fortuin-Kasteleyn contours
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The variance in the winding number of various random fractal curves, including the self-avoiding walk, the
loop-erased random walk, contours of Fortuin-Kastelyn clusters, and stochastic Loewner evolution, has been
studied by numerous researchers. Usually the focus has been on the winding at the end points. We measure the
variance in winding number at typical points along the curve. More generally, we study the winding at points
wherek strands come together, and some adjacent strands may be conditioned not to hit each other. The
measured values are consistent with an interesting conjecture.
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Duplantier and Saleurl] studied the winding angle be- lation clusters, the fractal dimension drops from &} to
tween the two endpoints of a finite self-avoiding walk 4/3, and that furthermore the precise definition of “narrow”
(SAW) in two dimensiong2D), and indeed, a broader class had little or no effect on the fractal dimension 4/3. See Ref.
of curves. Using exact but nonrigorous Coulomb gas methE9] for an explanation of this phenomenon in terms of path
ods, they found that the distribution of winding angle ap-crossing exponents. The external perimeter of percolation
proaches a Gaussian and they explicitly computed the variclusters is believed to be essentially the self-avoiding walk
ance. When the end points of the walk are distan@part, [7,9-11, and the external perimeters of FK clusters for other
the winding variance is~(8/g)InL, whereg is a model- Vvalues ofq are also interesting. Therefore, in addition to
dependent parameter which is 3/2 for SAW. The windingstudying the hulls of the FK clusters, we also studied their
angle at a single end poiritelative to the global average external perimeters by closing off passageways of lattice
direction of the curve—see below for a precise definitisn ~ spacing 1 and looking at the hulls of the resulting clusters.
a Gaussian with variance @in L [1]. We found experimen- The perimeters and external perimeters of FK clusters are
tally that the variance in the winding at typic&landom)
points along the curve was only 1/4 as large as the varianct
in the winding at the end points. More generally, whien
strands of the curve come together at a point, the winding
angle variance is kf as large as at the end points; Hf)
below generalizes this further.

Remark After our initial experiments we learned that the
4/(gk?)In L formula is also contained in unpublished notes of
Duplantier. However, to our knowledge, the winding at typi-
cal points or points wher& strands come together is not
mentioned in the literature, except in the case of loop-erasec =~
random walk(LERW), where we have identified a minor
oversight in the calculations that resulted in incorrect values X <‘§
being reported. Our experiments can be seen as a test L
Duplantier's Coulomb gas predictions. We also report on
other random fractal curves, for which the Coulomb gas
methods do not apply.

The main object of our study is the 2D Fortuin-Kasteleyn
(FK) random cluster modef2,3] at criticality, specifical-

ly the contours of the clusters. The FK model is like

bond percolation with edge probabilitp, but there is ]

another parameterq, and Pfconfiguratiofocp#sPonds A QS? o #S
(1— p)#'smissing bongg#'s clusters Eqr egchg, there is a critical
p above which the system percolates. Wheapitica» the
contours of the clusters form a system of loops called th
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FIG. 1. The contours and external perimeter of critical FK clus-
ters. The upper left panel shows a FK random cluster configuration

. Svith g=3 at criticality. On the upper right panel we closed off the
fully packed loop mode[4—-6]. See Fig. 1, left panels. A narrow passageways of this FK configuration by connecting adja-

|0#9p| configuration occurs with probability proportional t0 cent pairs of vertices that belong to the same connected component.
n* s PSwheren= fq [4-6]. In the lower panels we show the fully packed loop configurations

In addition to the perimetefor “hull” ) of a cluster, the  that come from the above bond configurations. The loops on the left
“external perimeter” has also been studiezke Fig. 1, right traverse the hull or perimeter of the clusters. The loops on the right
panel$. Grossman and Aharonl7] found experimentally traverse the external perimeter of the clusters. The longest perimeter
that by closing off narrow passageways on the hull of percotoop and longest external perimeter loop are shown in bold.
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TABLE I. Summary ofk, measurements for the perimeter and external perimeter of FK clusters. The table goes-uf4, tbeyond
which the FK model has a first-order phase transition without large Ifbf4.7. The values of the fractal dimensi@y are summarized
from Refs.[7-9,14,18—-28 and x; comes from Ref[1]. The values forx, for the perimeter and external perimeter were measured as
described belowk; for LERW, was measured by looking at the “triple points” of uniformly random spanning trees—points where three
strands come togethet, and k¢ for the spanning tree perimeter atg and x5 for LERW, respectively. Fog=1, «; is «, of the external
perimeter[9,24], and likewisexs= « (defined below The measurements are consistent with the hypothesiskak, /k?, a formula that
also appears if25].

Perimeter of FK clusters External perimeter of FK clusters

q? n®  g° k% Kk, k3 Ky ks kg D¢° Related model d 9 ki k; k3 D;  Related model

0 o 12 8 2 1/2 29 2 Spanning tree 0 2 2 12 219 5/4 LERW
dense SAW

1 1 213 6 3/2 2/3 6/25 714  Polymers &t point 1 3/2 8/3 2/3 4/3  Self-avoiding walk
square ice Brownian frontier

2 V2 3/4 16/3 413 5/3 2 43 3 34 11/8

3+2£ 1+2£ 45 5 5/4 13/8 345 54 1605 75

3 J3  5/6 24/5 6/5 8/5 3  6/5 10/3 17/12

4 2 1 4 1 3/2 Two perfect matchings 4 1 4 3/2

&y is the cluster fugacity in FK random cluster model. n?=q [4—6] (perimeter only, not external perimeter

® is the loop fugacity in fully packed loop model. n=—2 cos¢rg) [12,13.

‘g is the coupling constant of the associated Coulomb gas. k= K1=4/9 [1]; Dext. perimeter 1/ perimeter[14].

de is the winding angle variance whdncurves meet at a point.

D is the fractal dimension of curves. D;=1+1/(29)=1+«/8[12,15.

closely related to a variety of models, most notably the stoters by looking at the winding angle function. Given a loop
chastic Loewner evolutioNSLE) process introduced by or a path in the plane or on a torus, we define the winding
Schramn{26]. In a discretized version of SLE, a curve in the angle functionw(), a function of the edges, as follows. We
plane grows as follows: the portion of the plane not in thepick an arbitrary starting edgeon the loop or path and an
curve is conformally mapped to the half plane, with the tip of

the curve mapped to the origin. A small random cut is then'?]_ _ /
made starting at the origin, where the slope of the cut is ”% -

controlled by a parametex. The original curve gets ex- 111§ "

tended by the preimage of this small cut, and the proces: = /

\

repeats. The variance in the winding angle at the end point 010
SLE, is xInL [26].

The SLE process describes the limiting behavior of a va- /.
riety of statistical mechanical models in 2D. Schramm
proved that SLE gives the scaling limit of LERW, provided
that LERW has a conformally invariant scaling limit; re-
cently Lawler, Schramm, and Werng27] proved this with-
out assumptions. Smirnd28] proved that critical site per-
colation in the triangular lattice converges to SLEawler,
Schramm, and Wernef29] proved that the frontier of ¢ N side length of box
Brownian motion(with suitable boundary conditionson- W% 256 384 512 640 768 896 1024 1380 1536 1702 2048
verges to SLE. There are good theoretidg0] and experi- FIG. 2. er)dlng angle. variance for the largest contour when
mental[31] reasons to believe that SpEalso describes the L aS afunction of the side lengthof the box. Error bars on our
SAW. Calculations by Kenyon and Schrani®2] suggest estimates of the Wlndlng_ angle variance are shown, but are quite

. _ . . short and appear as points. A curve of the fokmin L+a was
that SLE, describes the loops arising from superimposing

: . least-squares fitted to these data and plotted here. The 95% confi-
two domino tilings. Rohde and Schramii5] proved that dence intervals £ 1.96 standard deviatiopgor the parameters are

the fractal dimensioD; of SLE, is at most & «/8 when x,=1.5002+0.0023 anda=0.554 94-0.013, consistent with,

«=8, and their calculations suggeSi=1+«/8. See also  _3/> The fit has g? statistic of 23.65 with 23 degrees of freedom

Refs.[18,20,33-37 for further results on SLE. Schramm or ap value of 0.42, so the fit passes thtest. In this case the fit

conjectured that the contours of FK clusters at criticalityis good all the way down tb,,;;=32. In some cases the fitted curve

have the same local properties as SlLEvhere x depends Jies outside the 95% confidence intervallat,, indicating correc-

onq. tions to scaling, and in these cases we incredsgg. These data
We study the perimeter and external perimeter of FK clus-are summarized in the first line of Table II.

g angle variance of

windin
ongest contour

8

\\1.
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WINDING ANGLE VARIANCE OF FORTUIN-KASTELEYN . ..

TABLE II. Winding angle variance coefficient for the longest
loop (k5), longest loop of the external perimetety), and largest
pinch of the longest loop«}). Whenqg=4, we expect that log
correctiong 43,44 affect the measured;, and «y .

Nearby X2 test
q Ko rational L’s p value
1 1.500+0.002 3/2 32-2048 0.42
2 1.333+0.003 4/3 32-1280 0.77
3+2\/§ 1.252+0.003 5/4 32-896 0.036
3 1.204+0.004 6/5 32-896 0.59
4 1.078+0.007 1? 32-768 0.72

Nearby X2 test
q K5 rational L's p value
1 0.666+0.002 2/3 80-2048 0.71
2 0.747-0.002 3/4 32-1280 0.67
3+2\/§ 0.772+0.003 4/5? 32-896 0.66
3 0.795:0.005 ?7? 32-896 0.019
4 0.800+0.008 ?? 32-768 0.75

Nearby x° test
q K4 rational L's p value
1 0.2390.007 6/25 32-2048 0.84
2 0.2470.008 12/49? 32-1280 0.27
3+2\/§ 0.243+0.009 20/817? 32-896 0.31
3 0.243-0.009 30/121? 32-896 0.71
4 0.2670.010 1/4?2? 32-768 0.86

arbitrary value for the winding functiomw/(e) at that edge.
The winding at a neighboring edge is defined byw(e’)
=w(e)+ the turning angle froneto e’ measured in radians.
This definition applies to paths or noncontractable loops, i.e

a point, this would yield a multivalued winding function, so
we adjust the definition ofw(e’)—w(e) by 2=/
(length of loop) to get a single-valued winding function.

PHYSICAL REVIEW E68, 056101 (2003

TABLE lll. Measurements ok, «,, k3, andDs for the paths
in uniform spanning tre€JST) (i.e., LERW[45]) and the minimum
spanning tregMST). The estimate ofk; comes fromk, of the
spanning tree contour. The first estimatexgfcomes from a triple
point, the second estimate comes from the longest pirgh ¢f the
spanning tree contour.

UST path Nearby x° test
(LERW) Parameter rational L's p value
K1 2.000£0.002 2 32-1792 0.024
Ko 0.510+0.003 1/2 48-1792 0.60
K3 0.235+0.010 2/9 40-1792 0.17
K3 0.229+0.008 2/9 32-1792 0.34
D; 1.252+0.001 5/4 32-1792 0.83
MST path

K1 1.886+0.001 ? 32-4096 0.81
Ko 0.439+0.002 ? 40-4096  0.0051
K3 0.200+0.006 ? 32-4096 0.97
K3 0.201+0.006 ? 32-4096 0.53
D; 1.218+0.001 ? 32-4096 0.070

k paths, each winding changes the dimer height function by
4k. The factor ofk was omitted, leading to the factor &f
discrepancy in the winding angle variance.

The longest contour of a FK configuration is likely to hit
itself many times(which is why the perimeter and external
perimeter are differeit the places where the contour hits
itself are called pinch points. For the longest contour, we
identified the pinch point giving rise to the longest pinch. At
this point there are four strands that travel a distance of the
order of the box lengtl, suggesting that the winding angle
variance at this point should grow as InL. However, as
noted by Schramnj24], the pinch point with the longest
pinch is an atypical pinch point because there are two adja-
cent strands conditioned not to hit each other—if they did hit

loops that wind around the torus. If a loop is contractable toéach other, then this would create a longer pinch. Thus, the

winding angle variance at the longest pinch point is governed
by a different constank,, and grows as InL.
In general, letx, be the winding angle variance coeffi-

This specifies the winding angle function up to a global ad-ciént when there ar& strands meeting at a point and two
ditive constant; we choose the value of this global constangdjacent strands do not hit each otitehenk=2, the left
to make the average winding angle of the edges on the 100 de of one strand may hit the right side of the other strand,

or path 0.

ut not vice versa Whenq=4, the strands do not hit each

When k strands of the perimeter or external perimeterother anyway{15], so x,=x,. Whenq=1 andk strands
converge on a point, the winding angle variance should scalg€et at a point, conditioning two adjacent strands not to

askyInL. Table | summarizes our measurementsf sug-
gestingk,= «;/k? (see also Refd25,39).
Remarks on LERWDur simulation values fok, and 3

touch has the same effect as adding an extra strapd:
=k+1 19,24]. For other values of it is plausible that re-
quiring two of the strands not to hit each other has the effect

for LERW disagree with the values previously reported byof adding some fractional number of stranidg|) between

Kenyon[39] by a factor of 4 and 9, respectively. These cal-
culations used the Temperlg$0] correspondence between

the strands required not to hit each other; similar phenomena
have been observed elsewhere. When two strands meet at a

spanning trees and dimer systems, and Kenyon correctly argbint that happens to be on the external perimeter, the right
rigorously computed the variance in the height function ofside of one strand does not hit the left side of the other
the associated dimer system when there were 1, 2, or 3 patlstrand. Thusk, for the perimeter isc, for the external pe-
approaching a point. The height function of the dimer systentimeter, which (by «,=«/4=1/g [1] and Jex:. perimeter

is related to the winding angle for the paths: when there are= 1/g,¢rimeter[14]) in turn is 1k, (for the perimetey; giving
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k1/(2+(q))2=4lky, outer contour and computed the winding angle function as
defined above. Fok,, the square of the winding at a random
f(q)=k,/2—-2, single edge on the loop is an estimator of the winding angle
variance of the loop, but a more efficient estimator is the
K=K/ (K+ Kkq/2— 2)2. average square of the winding angle of edges on the loop.

) ) For «,, we measured the square of the winding at the pinch
For example, whem=0 this predictsk,=2/9. Indeed, the point of the longest pinch of the longest contour. The data for
largest pinch point for SLE corresponds to a triple point of the longest contour wheq=1 (percolation are shown in
the Spanning tree, for which we already have the value 2/9F|g 2, whose Caption exp]ains how we estimateéd Ké,

For other values of,, our measured values &f, appear tobe  and «} . Tables Il and Il summarize our estimates.
consistent with this formula. _ . We also conducted measurements for the minimum span-
More generally, wherk strands meet at a point, and ning tree(MST) with random edge weights. The paths of the

adjacent pairs do not hit each other, we expect the windingST are smoother and less windy than those of the (€

angle variance to grow like Table 1l). For MST it is unlikely thatD;=1+ /8, so the
MST path is not described by SLE.
K1 InL 1) In conclusion, Eq.(1), which generalizes Duplantier’s
[k+j max0,x,/2—2)1? ' winding angle formula, is supported by both experiments and

heuristic arguments. It would be interesting to see if &9.
To measure thec’s for a given value ofg, for each of  holds for SLE..
several system sizdside lengthL a power of two multiple

H H — 3 3 3
of gl 5, 46, or 7, starting withL=4X2°5x2°6X2 7 ACKNOWLEDGMENTS
X2°,4x2% ...), wegenerated 10 000 random FK configu-
rations using the methods described in Rp44,42. In each We thank Oded Schramm and Jakendev for valuable

one we identified the longest conto(and also the longest discussions.
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